307 research outputs found

    Brain-inspired Evolutionary Architectures for Spiking Neural Networks

    Full text link
    The complex and unique neural network topology of the human brain formed through natural evolution enables it to perform multiple cognitive functions simultaneously. Automated evolutionary mechanisms of biological network structure inspire us to explore efficient architectural optimization for Spiking Neural Networks (SNNs). Instead of manually designed fixed architectures or hierarchical Network Architecture Search (NAS), this paper evolves SNNs architecture by incorporating brain-inspired local modular structure and global cross-module connectivity. Locally, the brain region-inspired module consists of multiple neural motifs with excitatory and inhibitory connections; Globally, we evolve free connections among modules, including long-term cross-module feedforward and feedback connections. We further introduce an efficient multi-objective evolutionary algorithm based on a few-shot performance predictor, endowing SNNs with high performance, efficiency and low energy consumption. Extensive experiments on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS, DVS128-Gesture) demonstrate that our proposed model boosts energy efficiency, archiving consistent and remarkable performance. This work explores brain-inspired neural architectures suitable for SNNs and also provides preliminary insights into the evolutionary mechanisms of biological neural networks in the human brain

    Adaptive Sparse Structure Development with Pruning and Regeneration for Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) are more biologically plausible and computationally efficient. Therefore, SNNs have the natural advantage of drawing the sparse structural plasticity of brain development to alleviate the energy problems of deep neural networks caused by their complex and fixed structures. However, previous SNNs compression works are lack of in-depth inspiration from the brain development plasticity mechanism. This paper proposed a novel method for the adaptive structural development of SNN (SD-SNN), introducing dendritic spine plasticity-based synaptic constraint, neuronal pruning and synaptic regeneration. We found that synaptic constraint and neuronal pruning can detect and remove a large amount of redundancy in SNNs, coupled with synaptic regeneration can effectively prevent and repair over-pruning. Moreover, inspired by the neurotrophic hypothesis, neuronal pruning rate and synaptic regeneration rate were adaptively adjusted during the learning-while-pruning process, which eventually led to the structural stability of SNNs. Experimental results on spatial (MNIST, CIFAR-10) and temporal neuromorphic (N-MNIST, DVS-Gesture) datasets demonstrate that our method can flexibly learn appropriate compression rate for various tasks and effectively achieve superior performance while massively reducing the network energy consumption. Specifically, for the spatial MNIST dataset, our SD-SNN achieves 99.51\% accuracy at the pruning rate 49.83\%, which has a 0.05\% accuracy improvement compared to the baseline without compression. For the neuromorphic DVS-Gesture dataset, 98.20\% accuracy with 1.09\% improvement is achieved by our method when the compression rate reaches 55.50\%

    Vision Aided Environment Semantics Extraction and Its Application in mmWave Beam Selection

    Full text link
    In this letter, we propose a novel mmWave beam selection method based on the environment semantics that are extracted from camera images taken at the user side. Specifically, we first define the environment semantics as the spatial distribution of the scatterers that affect the wireless propagation channels and utilize the keypoint detection technique to extract them from the input images. Then, we design a deep neural network with environment semantics as the input that can output the optimal beam pairs at UE and BS. Compared with the existing beam selection approaches that directly use images as the input, the proposed semantic-based method can explicitly obtain the environmental features that account for the propagation of wireless signals, and thus reduce the burden of storage and computation. Simulation results show that the proposed method can precisely estimate the location of the scatterers and outperform the existing image or LIDAR based works

    Multi-scale Evolutionary Neural Architecture Search for Deep Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have received considerable attention not only for their superiority in energy efficient with discrete signal processing, but also for their natural suitability to integrate multi-scale biological plasticity. However, most SNNs directly adopt the structure of the well-established DNN, rarely automatically design Neural Architecture Search (NAS) for SNNs. The neural motifs topology, modular regional structure and global cross-brain region connection of the human brain are the product of natural evolution and can serve as a perfect reference for designing brain-inspired SNN architecture. In this paper, we propose a Multi-Scale Evolutionary Neural Architecture Search (MSE-NAS) for SNN, simultaneously considering micro-, meso- and macro-scale brain topologies as the evolutionary search space. MSE-NAS evolves individual neuron operation, self-organized integration of multiple circuit motifs, and global connectivity across motifs through a brain-inspired indirect evaluation function, Representational Dissimilarity Matrices (RDMs). This training-free fitness function could greatly reduce computational consumption and NAS's time, and its task-independent property enables the searched SNNs to exhibit excellent transferbility and scalability. Extensive experiments demonstrate that the proposed algorithm achieves state-of-the-art (SOTA) performance with shorter simulation steps on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS and DVS128-Gesture). The thorough analysis also illustrates the significant performance improvement and consistent bio-interpretability deriving from the topological evolution at different scales and the RDMs fitness function

    Multi-User Matching and Resource Allocation in Vision Aided Communications

    Full text link
    Visual perception is an effective way to obtain the spatial characteristics of wireless channels and to reduce the overhead for communications system. A critical problem for the visual assistance is that the communications system needs to match the radio signal with the visual information of the corresponding user, i.e., to identify the visual user that corresponds to the target radio signal from all the environmental objects. In this paper, we propose a user matching method for environment with a variable number of objects. Specifically, we apply 3D detection to extract all the environmental objects from the images taken by multiple cameras. Then, we design a deep neural network (DNN) to estimate the location distribution of users by the images and beam pairs at multiple moments, and thereby identify the users from all the extracted environmental objects. Moreover, we present a resource allocation method based on the taken images to reduce the time and spectrum overhead compared to traditional resource allocation methods. Simulation results show that the proposed user matching method outperforms the existing methods, and the proposed resource allocation method can achieve 92%92\% transmission rate of the traditional resource allocation method but with the time and spectrum overhead significantly reduced.Comment: 34 pages, 21 figure

    Multi-Camera View Based Proactive BS Selection and Beam Switching for V2X

    Full text link
    Due to the short wavelength and large attenuation of millimeter-wave (mmWave), mmWave BSs are densely distributed and require beamforming with high directivity. When the user moves out of the coverage of the current BS or is severely blocked, the mmWave BS must be switched to ensure the communication quality. In this paper, we proposed a multi-camera view based proactive BS selection and beam switching that can predict the optimal BS of the user in the future frame and switch the corresponding beam pair. Specifically, we extract the features of multi-camera view images and a small part of channel state information (CSI) in historical frames, and dynamically adjust the weight of each modality feature. Then we design a multi-task learning module to guide the network to better understand the main task, thereby enhancing the accuracy and the robustness of BS selection and beam switching. Using the outputs of all tasks, a prior knowledge based fine tuning network is designed to further increase the BS switching accuracy. After the optimal BS is obtained, a beam pair switching network is proposed to directly predict the optimal beam pair of the corresponding BS. Simulation results in an outdoor intersection environment show the superior performance of our proposed solution under several metrics such as predicting accuracy, achievable rate, harmonic mean of precision and recall

    Direct observation of structure-assisted filament splitting during ultrafast multiplepulse laser ablation

    Get PDF
    Laser-induced plasma evolution in fused silica through multipulse laser ablation was studied using pump-probe technology. Filament splitting was observed in the early stage of plasma evolution (before ~300 fs). This phenomenon can be attributed to competition between laser divergent propagation induced by a pre-pulse-induced crater and the nonlinear self-focusing effect. This effect was validated through simulation results. With the increasing pulse number, the appearance of filament peak electron density was postponed. Furthermore, a second peak in the filament and peak position separation were observed because of an optical path difference between the lasers propagating from the crater center and edge. The experimental results revealed the influence of a prepulse-induced structure on the energy distribution of subsequent pulses, which are essential for understanding the mechanism of laser–material interactions, particularly in ultrafast multiple-pulse laser ablation
    • …
    corecore